
1

Systematic Software Reuse
It Isn’t What It Used to Be	

Martin Griss, PhD	

Principal Research Scientist	

Carnegie Mellon University, Silicon Valley Campus	

&	

Principal, Martin Griss Associates	

	

(C) - MARTIN GRISS - ICSR 2015

2

Agenda

•  Background
•  From Libraries to Factories
•  Generative Reuse
•  Agile Reuse
•  Conclusions

(C) - MARTIN GRISS - ICSR 2015

3

40 Years Evolving Reuse Practice
• Software portability, LISP compilers, languages - U of Utah
• HP Reuse libraries, corporate reuse program, process
• Software Reuse: From Library to Factory
• (Hybrid) Domain Specific Kits
• UML 1.0 standards committee
• Reuse advice to HP divisions & customers
• RSEB: Software Reuse: Architecture, Process,
 & Organization for Business Success
• FeatureRSEB, Product Lines
• LogicLibrary, Flashline and TopCoder consulting
• Reuse Comes in Several Flavors
• Study of TopCoder crowdsourcing
• Agile Reuse

(C) - MARTIN GRISS - ICSR 2015

4

Systematic Software Reuse
Component-oriented software engineering

A simple idea
 Use previously developed components, frameworks, other artifacts

 ... with complex execution ...
 New component & framework & generator technology & methods
 Architecture, process, organization, economics, cultural changes

 ... but with major benefits!
 AT&T, GTE, Ericsson, HP, IBM, NEC, Rolls-Royce, Toshiba, Volvo,…
Significant cost and time reductions
Improved agility

(C) - MARTIN GRISS - ICSR 2015

5

Reuse Body of Knowledge
Many books & conferences on reuse & related topics

–  Architecture, aspects, patterns, frameworks, components, product lines,
generators, domain engineering, management, organization

(C) - MARTIN GRISS - ICSR 2015

6

Many Reuse Technologies
• Aspects
• Patterns
• Templates
• Parameters
• Components
• Frameworks
• Domain-specific languages
• Generators
• Services/SOA
• Agents

• Library system(s)
• Horizontal vs Vertical reuse
• Domain Engineering
• Variability Analysis
• Reuse-oriented Architecture
• Model-Driven Development
• Product Line Engineering
• Open Source/Corporate Source
• Crowd Source

(C) - MARTIN GRISS - ICSR 2015

7

Many Reuse Questions
•  What kind of reuse should we do?
•  What strategy of marketing, incentives for reuse?
•  What is an appropriate organization model?
•  Should we do full scale product line reuse?
•  Should we do model-driven development
•  Should we use generators and domain-specific languages
•  What technologies and tools to focus on?
•  How are assets and support funded?
•  What kind of reuse pilots to do?
•  How and when to scale up?
•  How is reuse connected to other software initiatives: architecture,

SOA, process improvement, quality, metrics, open source, crowd
source, …

 (C) - MARTIN GRISS - ICSR 2015

8

(Staged) Adoption of Reuse

Investment, experience, time	

Reuse 	

Benefits	

No reuse	

Reduced	

development time	

Informal	

code salvaging	

Planned	

black-box	

code reuse	

Reduced	

maintenance costs	

Broader coverage	

Interoperability	

high reuse levels	

Rapid custom product 	

development business	

Significant	

management	

support.	

Code, other	

workproducts	

Architected	

reuse, process	

metrics	

 Pervasive	

 domain-	

 specific 	

 reuse	

Improved time to market, costs, quality

(C) - MARTIN GRISS - ICSR 2015

9

Reuse May Vary Across Organization

•  Ad hoc, random reuse

Platform, Services

Architecture, Frameworks

Components, Libraries

•  Strategic to company
success

•  Powerful enablers and
process enhancements

(C) - MARTIN GRISS - ICSR 2015

10

Reuse “Flavors”

ad hoc reuse - NONE

1. Facilitated – Encourage, support, enable
 individual or team choice

2. Managed Reuse - Require, enforce, control
 participation, use of assets

3. Architected Reuse – Architect, domain engineer
 assets for reuse, domain

4. Reuse-Driven Business – Reuse central to
 all decisions

(C) - MARTIN GRISS - ICSR 2015

11

Mixing Reuse Flavors
G
ov
er
na

nc
e/
Pr
oc
es
s/
	 R
ol
es
/	
To

ol
s	

	

Faciliated	 	
Reuse	

Managed	 	
Reuse	

Architected	 	
Reuse	

Reuse	
Driven	
Business	

(C) - MARTIN GRISS - ICSR 2015

12

Agenda

•  Background
•  From Libraries to Factories
•  Generative reuse
•  Agile reuse
•  Conclusions

(C) - MARTIN GRISS - ICSR 2015

13

From LEGO “components” to “kits”

(C) - MARTIN GRISS – ICSR 2015

14

(Hybrid) Domain-Specific “Kit”
Combine compatible asset types

P!

C2!
B1!

A3!

P!

I!

C1! D1!

I!

Components Framework Glue Tools Procedures

(C) - MARTIN GRISS – ICSR 2015

15

Business
Models

Customer

&
User

Requirements

Standards

Technology
Trends

Existing
Systems

Existing

Components

Application

System

Component
System

Application Family
Engineering

Layered
System

Component System Engineering

ApplicationSystem Engineering

RSEB

(C) - MARTIN GRISS - ICSR 2015

16

•  A set of products sharing common set of
requirements (or features), with significant
variability

•  Feature = product characteristic users,
customers & developers use in describing/
distinguishing members of product-line.

	

Product Lines

Product 1	

Product 2b	

Product 2a	

Product 3c	

Product 3a	

Product 3b	

Product 4b	

Product 4a	

Product 4c	

Product 4d	

High end
Market

Mid-market/
SOHO

Personal

time

(C) - MARTIN GRISS - ICSR 2015

17

Expressing Variability

 Components have
Variation Points where they
can be customized with
variants using various
mechanisms

VP1

variant Component

VP1

variant

Component

«variation point»

«bind» {VP1=variant}

Operation()
...

A
b

….

VP1

...

Component

Variation Points

(C) - MARTIN GRISS - ICSR 2015

18

RSEB
Product Line Engineering

Applications

Domain
Experts

Layered Architecture

Component System
Engineering

Application Family
Engineering

Business Model
•  Business processes

Component
Systems

Ranking/Prioritizing
 - Business use cases
 - Application use cases
 - Component systems

Existing
Applications

• Standards
• Technology trends
• Application priorities
• Customer trends

• Business
 priorities
• Application
 roadmap

Exemplers

Domain Model
•  Feature Model
•  Domain Architecture

Candidate
Components

Reengineering

Domain
Analysis

(C) - MARTIN GRISS - ICSR 2015

19

Developing for Application Family
Domain-specific, architected, product-line

Domain
Engineering Application

Engineering

Provide: Develop For Reuse

• scope domain
• variability
• architecture
• components & frameworks
• DSL & generators

Utilize: Develop With Reuse
• match to domain
• delta analysis
• select, adapt, integrate

(C) - MARTIN GRISS - ICSR 2015

20
© 1996, 1997,1998 Hewlett-Packard & Rational Software Corporation

Software Reuse - X.75

Announce-
ments

Variable P.I.N.

Decision

Time of
Day

Routing

Day of
Week

Routing

Date of
Year

Routing

Holiday
Schedule

Re-route
if busy

Called
off-hook

Caller
off-hook

800-
number

action

entry

PTP conference

voice video

type

individual

called caller

billing

POTS ISDN T1

line quality

PABX

exchange

Phone Service

Route
Call

Play
dial
tone

Announce-
ment

input

pulse tone

Dialing mode

Mandatory Vp-feature,
 use time_bound

Variant feature

Optional
Vp-

feature

Optional
feature

Legend

Optional feature

Vp- feature (XOR)

Vp-feature , use time
bound (OR)

Composed of

Feature Model For Telecom
FeatuRSEB

Combine RSEB, FODA, UML

(C) - MARTIN GRISS - ICSR 2015

21

FeatuRSEB

(C) - MARTIN GRISS - ICSR 2015

22

Agenda

•  Background
•  From Libraries to Factories
•  Generative reuse
•  Agile reuse
•  Conclusions

(C) - MARTIN GRISS - ICSR 2015

23

Generative Approaches
•  Built-in to Language

•  C/C++ macros, LISP macros, C++ templates, Java Generics, …

•  General Purpose Macro Preprocessor
•  GPM, STAGE2, M4, Basset Frames (NETRON), XVCL, VCL, ..

•  Extensible Languages
•  LISP, BALM/MBALM, Algol-68, EL1, …

•  Domain Specific Languages/Kits
•  Via YACC, MetaLISP, BALM ,,,. (e.g., PictureBALM), Visual

Programming kit, OO Instrument Kits)

•  Model-driven Generators
•  GenVOCA; MetaCASE; OMG MDA (UML for PSM/PIM), …
•  Aspects, …

(C) - MARTIN GRISS - ICSR 2015

24

XVCL Specifications Version 2.10

XML-based Variant Configuration Language (XVCL) Copyright (C) 2001-2002 National University of Singapore
XVCL concept and language definition Copyright (C) 2001-2002, National University of Singapore and Netron Inc.

6

The SPC becomes a root of an x-framework. During x-frame processing, the XVCL
processor interprets the XVCL commands contained in the SPC, traverses an x-
framework, performs adaptation by executing XVCL commands embedded in x-
frames, and emits code components for a specific system, a member of the product
line.

2.1 Defining the processing flow

XVCL processor starts processing with an SPC. XVCL commands in the SPC, and in
each subsequently <adapt>ed x-frame, are processed in the sequence they appear in the
x-frame. Whenever the processor encounters an <adapt> command in the currently
processed x-frame, processing of the current x-frame is suspended and the processor
will start processing the <adapt>ed x-frame. Once processing of the <adapt>ed x-
frame is completed, the processor resumes processing of the current x-frame. When the
XVCL processor reaches the end of the SPC - the processing is completed. Figures 1a
and 1b illustrate an x-framework and the processing flow.

xx--frame Bframe B
BBB beforeBBB before

<adapt D /><adapt D />
BBBBBB

<adapt E /><adapt E />
BBB afterBBB after

xx--frame Dframe D
DDDDDD

xx--frame Cframe C
CCC beforeCCC before

<adapt E /><adapt E />
CCCCCC

<adapt F /><adapt F />
CCC afterCCC after

xx--frame Aframe A
AAA beforeAAA before

<adapt B /><adapt B />
AAAAAA

<adapt C /><adapt C />
AAA afterAAA after

xx--frame Eframe E
EEEEEE

xx--frame Fframe F
FFFFFF

Figure 1a. An x-framework (B, C, D, E and F) and SPC (A)

A

F E D

C B XVCL
Processor

AAA before
BBB before
DDD
BBB
EEE
BBB after
AAA
CCC before
EEE
CCC
FFF
CCC after
AAA after

B assembles
B,D & E

C assembles
C,E & F

A is the
specification
x - frame (SPC)

Order of Assembly= (ABDBEBACECFCA)

Start End

Legend
adapt X- frame
traversal path

8

2

3

4 5
6

7

1

9 10
11

12
13 14 15

16

17
18

Figure 1b. Processing an x-framework

XVCL/Bassett Frame Generator
•  XML-based generator	

•  Template-based DSL	

•  Easy to layer onto existing software	

•  Manage commonality and variability	

•  Weaves code fragments (“aspects”)	

•  Used for code reuse and product lines	

(C) - MARTIN GRISS - ICSR 2015

25

Aspect-Oriented MDD
AOP, SOP, FOP, XVCL

Component	

Component	
 Component	

Component	

Component	

Withdraw Money	

Cashier Interface	

Dispenser	

Account	
Withdraw	

Deposit Money	

Deposit	

Slot	

(C) - MARTIN GRISS - ICSR 2015

26

OMG/UML Model Driven Architecture

independent models to produce platform-specific models using mappings. Within the system development lifecycle
process, the MDA applies platform-independent models and platform-specific models to sustain and leverage investments
in requirements, technologies, and the lifecycle that bridges the gap between them as they independently change. Such
an approach generally leads to long-term flexibility of implementations, integration, maintenance, testing and simulation
as well as portability, interoperability and reusability. The MDA emerged from the efforts of the OMG and its constituent
members to culminate in 2000. Currently, MDA 1.0 is proliferating in the industry.

The OMG has various Technology Committees (TCs) for providing standardization guidance and recommendations. Various
Domain Technology Committees (DTCs) focus on vertical markets such as Healthcare, Finance, Telecommunications,
Manufacturing, Transportation, and so forth to capture standard domain-specific models that form the foundation for
platform-independent models. Various Platform Technology Committees (PTCs) focus on horizontal technologies such as
Web Services to capture standard technology-specific models that form the foundation for platform-specific models. And
the OMG has an Architecture Board (AB) that oversees the standardization in order to ensure coherence and consistency
of the standards.

Foundation

Figure 2 shows the foundational concepts of what generally constitutes the MDA.

Figure 2: Foundational Concepts of the MDA

Systems, Models, and Model-Driven Approaches

A system (or physical system) is a collection of elements organized together for a specific purpose. A model of a system is
a description or specification of the system and its environment for a specific purpose, which may be presented
graphically and textually. A model-driven approach focus on models to work with systems, including understating,
designing, constructing, deploying, operating, maintaining, and modifying them. Figure 2, relative to Figure 1, shows that
the MDA’s model-driven approach corresponds to problem solving.

Platforms, Applications, and Implementations

A platform is a set of technologies, including functionality provided through interfaces and usage patterns. Platforms may
be generic (such as object oriented or batch processing), technology specific (such as the Java platform), or vendor
specific (such as the Microsoft .NET platform). A platform model describes a platform, including its parts and the services
it provides. A pervasive service is a service that is available in a wide range of platforms. For example, file services,
security services, and so forth. An application refers to some functionality provided by a system. A system is a collection
of applications supported by a collection of platforms. An implementation is a specification that contains all of the
information for construing and putting a system into operation. For example, a storefront system may be a collection of
Java programs that provide financial transaction applications supported by the Java platform, which is described by the
JVM Specification platform model.

Figure 2, relative to Figure 1, shows that a platform corresponds to an environment, a system and its applications
corresponds to a solution, and an implementation corresponds to an implementation model.

Architecture, Viewpoints, Views, and Models

The architecture of a system involves what elements make up the system and how they work together to provide the

Understanding the Model Driven Architecture (MDA) http://www.methodsandtools.com/archive/archive.php?id=5

3 of 5 4/16/13 3:03 PM

•  Use UML + <<stereotypes>> + OCL
•  Create

•  Problem Independent Model (PIM)

•  Generate
•  Problem Specific Model (PSM)

•  Transformation rules

(C) - MARTIN GRISS - ICSR 2015

27

Agenda

•  Background
•  From Libraries to Factories
•  Generative reuse
•  Agile reuse
•  Conclusions

(C) - MARTIN GRISS - ICSR 2015

28

22
Does Scale Really Matter?: ULS Systems Seven Years Later

Linda Northrop: May 24, 2013
© 2013 Carnegie Mellon University

Approaches to Software Development

The Engineering Perspective The Agile Perspective

Agile in the Enterprise
Plan-driven vs Agile vs Hybrid

•  Conventional plan-driven process
–  Large teams
–  Standardized models, architecture,

documents and process

•  Feature-oriented agile process
–  Small teams
–  Rapid development
–  Customer-oriented release and evolution
–  Expertise and tacit knowledge
–  Emergent architecture

•  Hybrid approaches
–  Address scale, reuse, architecture

Requ.
Spec.

Arch.
Design

Implement
Test

Deploy

(C) - MARTIN GRISS - ICSR 2015

29

Approaches to “Agile” Reuse
Oxymoron? - YAGNI

Incremental Feature-Oriented Reuse
•  Leverage agile feature/story cards, SCRUM backlog
•  Feed incremental Feature-Oriented Domain

Engineering (FODA, FeatuRSEB)
Leverage Management of Technical Debt

•  Technical Debt accumulates with deferred decisions
and work, coding shortcuts

•  Incrementally pay off debt by re-factoring, re-
engineering, re-architecting

•  Economic/metrics models to help make decisions
Domain Specific Languages

•  Various levels of model-driven development
(C) - MARTIN GRISS - ICSR 2015

30

Manage Technical Debt

Story	

Points	

Iteration	

Learning	

Refactor	

Refactor	

Velocity	

Technical 	

Debt	

Burn 	

Down	

New ���
Requirement	

New ���
Requirement	
 Reuse	

(C) - MARTIN GRISS - ICSR 2015

31

(New) Sourcing Models

• Open Source
• Varying community and process

management

• Corporate Source
• Foster open source “style”

in companies

• Crowd Source
• Deliberate engagement

of community

1

2

3

4

Contribution

Code

Project
leadership

Testing

Internal QA

Working
practices

SPGF

(C) - MARTIN GRISS - ICSR 2015

32

Agenda

•  Background
•  From Libraries to Factories
•  Generative reuse
•  Agile reuse
•  Conclusions

(C) - MARTIN GRISS - ICSR 2015

33

Assess Reuse Readiness
1. Business goals that motivate reuse

–  Time, cost, quality, integration, agility, standards, …
–  Urgency, importance, champion …

2. Domain(s) readiness for reuse
–  Stability and variability, standards
–  Obvious, pervasive product line

3. Organizational readiness
–  Culture, process maturity, autonomy, standards
–  Conflicting initiatives, prior history, technology shifts,

4. Reuse experience
–  Current stage or flavor of (systematic) reuse
–  Reuse level, technology use, library use

(C) - MARTIN GRISS - ICSR 2015

34

Conclusions
•  Software reuse approaches keep evolving
•  Assess reuse readiness before selecting

reuse goal and flavors
•  Identify opportunities for small DSL/MDD,

generators and product-lines
•  More work on agile reuse,

SEMAT/reuse,
open source/crowd source

(C) - MARTIN GRISS - ICSR 2015

